

REVIEW ARTICLE

Integrating Data Mining Techniques into Robotic Systems: An Analytical Study Towards Developing Intelligent Performance

Shuruq Khalid Abdulredha¹, Hasanain Mohammed Manji Al-Rzoky^{2*}

^{1,2} Directorate Education of Babylon, Ministry of Education, Iraq

*Corresponding author E-mail: Hasanain.comp86@gmail.com

Article Info.	Abstract
<i>Article history:</i>	In recent years, the convergence of data mining and robotic systems has emerged as a key trend shaping the future of artificial intelligence. This research provides a comprehensive review and comparative analysis of the latest studies at the intersection of social robotics, data mining, cybersecurity, and adaptive learning methodologies. The review highlights key research trends, including deep reinforcement learning, evolutionary learning, meta-learning, and continuous learning, as fundamental to the development of self-adaptive robotic systems. The analysis demonstrates that these techniques significantly enhance robots' ability to interact in real time, make decisions, and adapt to dynamic environments. The research also underscores the growing importance of cybersecurity and data protection as essential elements in intelligent robotics applications, particularly in sensitive sectors such as healthcare and human-centered services. The findings demonstrate that integrating artificial intelligence and data mining with cybersecurity is crucial for building more resilient, secure, and interactive robotic systems. Finally, the research identifies current challenges and future trends, including privacy-conscious learning, knowledge transfer from simulation to reality, and lifelong learning, which are essential for developing the next generation of intelligent, self-adaptive robots.
Received: 13/11/2025	
Accepted: 11/12/2025	
Published: 26/01/2026	

Keywords: Artificial Intelligence, Data Mining, Robotic Systems, Social Robots

2026 Center of Science.

Introduction

The area of artificial intelligence has advanced significantly in recent decades, and intelligent systems are now essential to many industrial and service applications. Robots, which have progressed from simple pre-programmed tools to intelligent systems with the ability to learn, adapt, and make judgements, are among the most well-known of these applications [1]. Conventional robots' performance and capacity to engage with uncertain surroundings were constrained by their reliance on pre-established instructions to complete jobs. More sophisticated methods like data mining and machine learning have started to be applied to offer robots the capacity to learn from data and gradually enhance their performance as a result of advancements in artificial intelligence algorithms [2], [3]. Fig. 1 shows simply artificial intelligence and robotic.

Fig. 1: Artificial Intelligence and Robotic [4]

The technique of examining vast volumes of data to find hidden patterns and connections that can be applied to forecasting and decision-making is known as data mining. From corporate to energy applications, this field has contributed significantly to the development of numerous other fields. Researchers have started using it in robotic systems to enhance robot performance and make them more intelligent and interactive as it has emerged as a potent analytical tool [5]. Incorporating data mining into robotic systems improves the robot's ability to analyze environmental data, comprehend user behavior, and adapt to various environments in addition to improving its motor or sensory skills. Data mining techniques, for instance, can be used by social robots to comprehend user interaction patterns and respond with more relevant information [6].

This integration is not without its difficulties, though, as it brings up a number of concerns, chief among them data security, particularly given that intelligent robotic systems occasionally handle private or sensitive environmental data. Common dangers include denial-of-service attacks, tampering with input data, and listening in on sensor data [7], [8]. Furthermore, sophisticated analytical algorithms that can function in real time are necessary because of the nature of the data that robots manage, which is frequently unstructured and unmediated [9].

Technical and Conceptual Underpinnings for Combining Robotics and Artificial Intelligence

1. Robots' Classification and Functional Architecture in the Framework of Artificial Intelligence and Social Interaction

Robots are defined as mechanical systems programmed to perform specific tasks autonomously or semi-autonomously, and are used in many industrial, medical, and service fields. These systems typically consist of sensors that enable them to collect information from the environment, actuators that assist them in carrying out tasks, and intelligent control software that processes data and makes decisions. Robots differ depending on the type of work they do and where they are used. Among them are industrial robots, which are frequently employed in manufacturing and production lines to swiftly complete precise and repetitive jobs [10], [11]. Additionally, medical robots are employed in diagnostics, microsurgery, and patient care, helping to lower human error and enhance the quality of medical services [12]. Additionally, there are service robots that work in dynamic contexts that call for sophisticated interaction skills and offer a variety of services to users in their daily lives, like personal help and cleaning [13]. Lastly, the most recent category consists of intelligent robots, which use machine learning and artificial intelligence technologies to learn on their own, adjust to their surroundings, and make sophisticated judgments on their own [14].

2. The idea of data mining and how it helps with information extraction from large data

The process of identifying hidden patterns and trends in large amounts of data is known as data mining. It makes use of algorithms like regression, clustering, and classification and is frequently used with large data through Hadoop and Spark. Stated differently, it is the process of employing techniques like regression, clustering, and classification to analyze big data sets in order to find patterns and important information. It is employed in a number of industries, including cybersecurity, marketing, and health [2], [3].

Deep Learning and Robotics

Modern robots may now self-learn and improve their performance using methods like deep learning thanks to advancements in artificial intelligence. As a result, they are now better able to identify trends, comprehend situations, and make more informed decisions. As a result of this advancement, the employment of robots in intricate and unstructured contexts has increased. Examples of these include social robots and those employed in emergency and medical situations [15]. Mechanical robots that use sophisticated sensors and control processors to interact with their environment are part of contemporary robotic systems. By using deep learning techniques, which have shown promise in tasks like image and scene recognition, complex decision-making, and autonomous navigation in unstructured environments, these systems have undergone significant evolution [15], [16], [17].

Combining the Internet of Things and Data Mining to Create Interactive Robots

One of the most significant advancements in robotic systems is self-learning. Robots can now make the right judgments and adapt to dynamic and complicated settings without the need for pre-programming for every scenario thanks to data mining techniques that examine sensor data and uncover hidden patterns. These skills, especially in social and service robots, greatly improve the user experience by assisting robots in comprehending and adapting to user actions, which increases the effectiveness of human-robot interaction [18], [19], [20]. Additionally, an integrative framework known as the Internet of Robotic Things (IoRT) has arisen, which enables robots to be linked to a network of smart devices via the internet, providing them with real-time and live data access. Robots can improve their response to environmental factors, as well as their prediction and real-time interaction skills, by combining this data with intelligent analysis techniques. This opens up a wide range of possibilities for robotic applications in smart cities, healthcare, and smart [19], [20].

We will break down the ideas into three primary axes—robotic self-learning, intelligent human-human interaction, and the Internet of Robotic Things (IoRT)—in order to better comprehend the evolution of intelligent robots and their function in interactive environments. To show how each axis contributes to the development of contemporary robotic systems and how they are integrated into real-world applications, each will be discussed independently.

1. Algorithms for Robotic Internal Learning

Robotics learning relies heavily on reinforcement learning methods. They represent states and actions using conventional Q-tables. Performance in real-world systems is hampered by these tables' size and complexity, which grow as the environment or number of variables rises. In order to help robots learn policies more effectively, new research has suggested compressing or shortening these tables using data mining techniques. This can be done by combining comparable states or reducing dimensions [3]. These methods have demonstrated encouraging outcomes in terms of shortening learning times and increasing the precision of decisions made in dynamic settings.

2. Social Robots

As artificial intelligence technology advances, a new field called social robotics has evolved with the goal of creating robots that can interact with people in a natural way. These robots interpret and adjust to user behavior over time by analyzing temporal data. Unsupervised learning, which enables robots to identify patterns in human interaction without the requirement for pre-labeled data, is one of the most popular techniques utilized in this area [10], [21]. Through repeated contacts and accumulated knowledge of human behavior, this technique allows robots to progressively build social bonds with people [22].

3. Robotics and the Internet of Things (IoRT)

Combining robotic systems and Internet of Things technology, the Internet of Robotic Things (IoRT) is a qualitative advancement that enables communication between robots and the surrounding smart infrastructure. The creation of intelligent and cooperative distributed ecosystems is facilitated by this integration, which permits real-time data processing (analytics) and real-time decisions based on inputs from the surrounding environment. According to studies, IoRT technologies are currently being applied in a wide range of fields, including healthcare, smart cities, and environmental monitoring, and they may eventually spread into more intricate fields [19].

Using data mining to enhance the behavior of intelligent robots

1. Robotics Self-Learning

Robots can use data mining, a potent technology, to examine sensory information from their surroundings and identify pertinent behavioral patterns. This intelligent analysis improves the robot's capacity for self-learning and situational adaptation by enabling it to make appropriate decisions in dynamic and changing contexts without the need for direct human interaction [2], [15].

2. Enhancing Human-Robot Interaction and Performance

By making social and service robots more sensitive to user behaviors, data mining helps to increase their efficiency. Robots can better adjust to user preferences by examining user behavior and previous interaction patterns. This makes the interaction more realistic and efficient and increases user adoption of these intelligent systems [1], [23].

3. Robots in the Context of the Internet of Things (IoRT)

Connecting robots to networks of smart devices that provide them access to real-time data is the foundation of the Internet of Robotic Things (IoRT) concept. Robots may make better interactive judgments and quickly adjust to their surroundings by mining this data, which increases their flexibility and effectiveness when executing jobs in complex and changing situations [24], [25].

Importance of the Study

The way this research approaches the nexus of three crucial and complementary fields—social robots, data mining, and cybersecurity—highlights its significance. Designing intelligent systems that can precisely comprehend user behavior, improve interaction quality, and contribute to a better user experience has become essential due to the growing reliance on robots in social and service environments [18]. To enable robotic systems to continuously learn and adjust to behavioral and environmental changes, data mining is a crucial tool for gleaning patterns and understanding from the massive volumes of data created.

However, it is evident that cybersecurity issues are becoming more prevalent, particularly as robotic systems become more susceptible to assaults meant to compromise user privacy or interfere with system operation. Cyberattacks on linked AI systems have reportedly increased by more than 30% in recent years. To guarantee the dependability and security of interactions, research into incorporating security protection methods into these systems is crucial [2], [20].

Research Goals

- 1) To illustrate how crucial it is to combine data mining and adaptive learning methods when creating self-adaptive robots in order to enhance their performance in changing situations.
- 2) To examine how different adaptive learning strategies—like reinforcement learning, meta-learning, and continuous learning—help robots adapt swiftly and sustainably.
- 3) To investigate the technological difficulties related to model complexity, algorithm stability, and the requirement for massive data by robots in the context of adaptive learning.
- 4) To talk about the cybersecurity and user privacy issues that arise when social robots are programmed with AI approaches.
- 5) To investigate emerging trends in the creation of intelligent algorithms that integrate data mining and adaptive learning to accomplish self-sufficient automation and dynamic user engagement.
- 6) To offer suggestions for improving the way AI and data mining methods are integrated into the creation of safer and more effective robots for use in industrial, medical, and service domains.

Hypotheses for Research

- The evolution of social robots' behavior and their capacity for productive user interaction are positively correlated with the adoption of data mining techniques.
- Users' trust in the usage of social robots decreases as a result of inadequate cybersecurity measures.
- The efficiency and efficacy of social robots are increased by the integration of AI technology and information security measures.

Review and Analysis of Data Mining and Robotic Applications Scientific Literature

Research on human-machine interaction through so-called social robots has grown significantly in recent years. These systems are utilized in a variety of industries, including services, education, and health, and are made to communicate with users in a natural and cordial manner. Through efficient interaction and comprehension of behavioral circumstances, social robots are progressively improving user experiences [23]. On the other hand, data mining is an essential analytical technique that helps to improve robot intelligence. It claims that techniques like sentiment analysis and categorization make it possible to identify precise behavioral patterns in a collection of data, which helps with intelligent decision-making and enhances robot performance in interactive settings [1].

Cybersecurity concerns have become a crucial component as the usage of robots has expanded into increasingly delicate domains. This is demonstrated in that these systems are susceptible to a variety of cyberattacks, necessitating improved security measures that include authentication and encryption in addition to early threat detection technologies to guarantee user data security and interaction dependability [26]. Studies show that social robots are effective at helping the elderly and delivering healthcare from a practical standpoint. These apps still have a lot of trouble protecting users' data and adjusting to them [21], [27], [28], [29].

Though, the use of deep learning and reinforcement learning to enhance robot behavior and the examination of temporal data to enhance real-time reactions are examples of recent developments in this field. Other research has also examined the function of the Internet of Things (IoRT) in improving robotic ambient connection and the significance of user privacy when engaging with intelligent robots [15], [20], [30], [31], [32]. Regarding the technical, behavioral, and security aspects of intelligent robotic systems, the table (1) provides an overview of a collection of foundational studies that make up the theoretical framework of this study.

Table (1): Review Table of Major Studies on Social Robotics and Human-Machine Interaction (Titles, Abstracts, And References)

No.	Title	Summary	References
1	Human–robot interaction: a survey	The study reviews Human–Robot Interaction (HRI), outlining key themes and challenges in the field. It analyzes multidisciplinary research to unify concepts. The authors emphasize autonomy, communication, and human-centered design as future priorities.	[23]
2	Artificial Intelligence: a modern approach	Highlights the importance of data mining and machine learning techniques such as classification and sentiment analysis in extracting accurate patterns from user data.	[1]
3	Secure Robotics: Navigating Challenges at the Nexus of Safety, Trust, and Cybersecurity in Cyber-Physical Systems	The article introduces the concept of secure robotics, addressing challenges at the intersection of safety, trust, and cybersecurity in cyber-physical systems. It reviews risks from robotic malfunctions and cyberattacks, emphasizing trust and ethical responsibility in human–robot interactions. The study proposes a structured framework to enhance robotic reliability and resilience in the evolving cyber-physical era.	[26]
4	Machine learning: Trends, perspectives, and prospects	Examines the role of deep learning and reinforcement learning in enhancing robots' understanding of human behavior and enabling intelligent interaction.	[33]
5	Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the internet of robotic things	The study systematically reviews recent research on the Internet of Robotic Things (IoRT), focusing on big data management, sensing, computing, and perception technologies. Using PRISMA guidelines and bibliometric tools, it analyzes how IoRT integrates AI, machine learning, and edge computing to enhance automation and coordination in robotic systems.	[6]
6	A robust and lightweight privacy-preserving data aggregation scheme for smart grid	The study proposes HTV-PRE, a lightweight and quantum-resistant privacy-preserving data aggregation scheme for smart grids. It ensures strong privacy, fault tolerance, and verifiable aggregation with minimal computational overhead, outperforming existing methods in speed and robustness.	[31]

7	Smart contract assisted privacy-preserving data aggregation and management scheme for smart grid	The paper proposes PATM, a blockchain-based privacy-preserving and trust management scheme for IoT-enabled smart grids. Using an improved Boneh-Goh-Nissim cryptosystem and a five-layer architecture, PATM enhances data security, resists differential attacks, and achieves higher efficiency than existing methods.	[32]
8	Reinforcement learning in robotics: A survey	Focuses on robots' ability to modify their behavior and learn new strategies autonomously when facing unfamiliar environments or tasks using adaptive learning. This is a key research challenge toward achieving robotic autonomy.	[34]

The most well-known studies that deal with the nexus of cybersecurity, social robotics, and data mining are briefly reviewed in Table 1. Key ideas including machine learning, temporal behavior analysis, data privacy, human-machine interaction, and Internet of Things applications are clarified by these sources. They also highlight upcoming difficulties related to the creation of intelligent, self-adaptive robots. These studies help to create a clear picture of present and future research trends and offer a strong theoretical basis for comprehending technical and research advancements in this multidisciplinary sector. When taken as a whole, the findings highlight how crucial it is to combine cybersecurity, data mining, and artificial intelligence in order to create more interactive, flexible, and safe robotic systems.

They also draw attention to the necessity of creating future models that respect privacy, simplify systems, and improve their capacity for self-learning and productive interaction.

A Comparative Study of Self-Adaptive Robots' Adaptive Learning Methods

The intelligent robotics has witnessed remarkable advancements in the use of machine learning techniques, particularly Deep Reinforcement Learning (DRL). Recent studies [35] have demonstrated the evolution of DRL methodologies from theoretical models to practical applications in areas such as mobility, human-robot interaction, and multirobot collaboration. Based on this, the integration of evolutionary and reinforcement learning has emerged as a contemporary research focus for scholars and stakeholders, demonstrating how to enhance robot performance through advanced learning methods [36]. Meanwhile, meta-learning contributes to enabling robots to self-adapt and continuously improve [37].

To meet the demands of changing environments, the focus has been on transferring knowledge from simulation to real-world applications to bridge the gap between robot performance in the lab and practical applications. Furthermore, continuous learning methods are being developed to overcome the problem of "catastrophic forgetting" and enable robots to adapt rapidly [38]. Recent studies have also proposed a scientific framework that combines data-limited learning, continuous learning, and active learning to design artificial intelligence models adaptable to changing environments [39].

At the level of real-world application, comprehensive reviews [34], [35] assess the achievements and limitations of reinforcement learning in robotics, highlighting the challenges and algorithms used to teach robots various behaviors. Learning from Demonstration (LfD) approaches [40] focus on teaching robots through real-world scenarios, explaining methods for collecting examples, extracting policies, and the associated challenges. Some early studies [41], [42] have also explored map building, autonomous navigation, and fine motor skills learning using reinforcement learning algorithms combined with motion models, contributing to improved robot efficiency in complex, high-dimensional tasks.

In this paper, we will conduct a comparative analysis of adaptive learning methods used in self-adaptive robots. We will present key works including demonstration learning (LfD), reinforcement learning (RL/Deep RL), meta-learning, evolutionary learning, and continuous/automatic learning. Using a structured analytical framework, we will identify each reference by its area of focus, the technique used, the year, and its role in the study. Fig. 2 illustrates the general overview of the development of learning methodologies and techniques in intelligent robots, highlighting the main research themes and techniques used, which facilitates understanding the relationships between previous studies before looking at the details in the table (2).

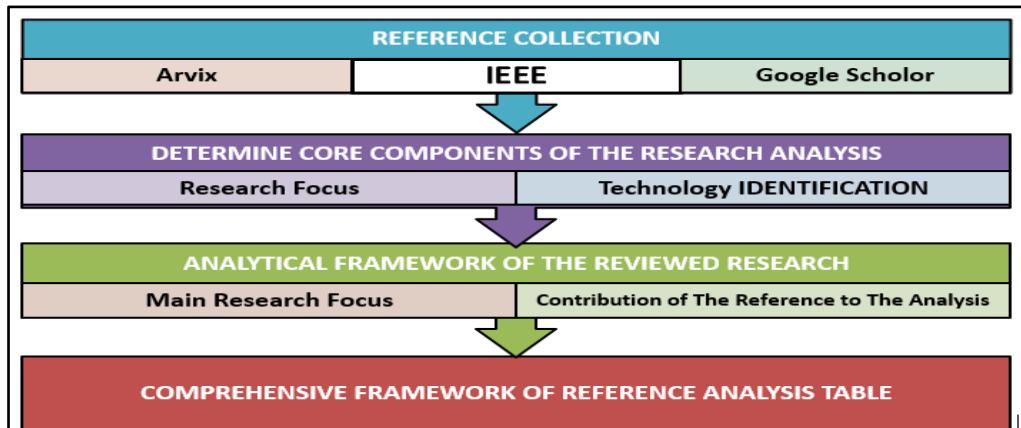


Fig.2: Framework For Analyzing Scientific Studies

The table (2) illustrates the main research themes of previous studies, along with the year, type of technology, and the analytical role of each source, provide a comprehensive view of the evolution of learning methods and technologies used in intelligent robots.

Table (2): Analyzing Scientific Studies

Main Research Focus	Academic Source	Technology Type	Role of the reference in the analysis
Methodologies evolve over time	[35]	Deep Learning (DRL) Reinforcement Learning	It illustrates the historical development of DRL methodologies from theoretical models to real-world applications in mobility, human interaction, and multi-robot collaboration.
Types of technologies used	[36]	Evolutionary learning + reinforcement learning	Combining evolutionary learning with reinforcement learning as a modern research trend.
Types of technologies used	[37]	Meta-learning	Explaining how to enable the robot to self-adapt and continuously improve. Main Research Focus
To adapt to changing environments	[43]	Transferring knowledge from simulation to reality	Explain how the gap between performance in the lab and the real world is narrowed.
Rapid adaptation and continuous learning	[38]	Continuous Learning	The problem of “catastrophic forgetfulness” and the need for continuous learning.
Developing a framework for Few-Shot Continual Active Learning to enable rapid adaptation to new tasks while mitigating catastrophic forgetting.	[39]	Meta-Learning, Active Learning, Continual Learning	Provides theoretical and experimental foundation for combining few-shot, continual, and active learning approaches, useful for designing adaptive AI models in evolving environments.
Analyze real-world DRL performance and identify research gaps	[35]	Deep Reinforcement Learning (Deep RL)	Provides a comprehensive view of both achievements and limitations of DRL in real-world robotics, supporting analysis and guiding future research
Review of reinforcement learning methods applied to robotics, highlighting challenges, applications, and algorithmic approaches for learning robot behaviors.	[34]	Reinforcement Learning (RL)	Provides a comprehensive survey of RL techniques in robotics, summarizing methodologies, challenges, and practical applications; serves as a theoretical foundation for designing RL-based robotic systems.
Return to the previous state (LfD)	[40]	Learning from Demonstration (LfD)	It explains the methods of teaching robots from case action examples, explains how to collect examples (imitation, remote operation) and how to extract policies (matching functions, dynamic models, planning), and highlights the challenges and future trends in LfD.
Map building and autonomous navigation methodologies for robots	[41]	Combining grid-based maps with topological maps using neural networks and simple Bayesian integration.	It explains how to combine metric and topological models to achieve a balance between accuracy and efficiency in mapping the internal environments of robots, which is one of the first attempts to employ artificial intelligence (neural networks) in robot self-learning.
Learning motor skills in robotics using reinforcement algorithms	[42]	Learning reinforcement using Policy Gradient Reinforcement Learning combined with Motor Primitives	The research illustrates the early development of using reinforcement learning (RL) algorithms to teach robots human-like fine motor skills, by combining standardized kinematic units with Policy Gradient algorithms. It highlights how this approach helped improve efficiency in acquiring high-dimensional motor skills.

Intelligent Robotics: Technical Difficulties and Potential Uses

Intelligent robotic systems face complex technical challenges related to managing and analyzing massive amounts of diverse data. Processing large and complex datasets is one of the most significant obstacles to the development of these systems. In this context, data mining is a crucial tool for improving knowledge representation in robots and simplifying the models they use. This is achieved by discovering meaningful patterns and reducing the amount of data required for processing, thus contributing to increased efficiency and speed in decision-making [44].

Data mining techniques also enhance robots' ability to learn autonomously and adapt to changing environments without direct human intervention, which supports the concept of intelligent automation and increases system autonomy. Despite significant progress, major technical limitations remain, most notably the difficulty of handling dynamic and unpredictable environments, the lack of standardized criteria for evaluating the performance of deep learning algorithms in robotic contexts, and the need for infrastructure capable of processing data in real time to provide immediate responses. Looking ahead, the increasing integration of intelligent robots with data mining technologies opens up vast opportunities for developing their capabilities, especially with advancements in deep learning and reinforcement learning algorithms, which will enhance robots' understanding of complex situations and improve their decision-making [44].

Big data and cloud computing technologies will also contribute to creating collaborative environments between different systems, facilitating knowledge sharing and increasing performance efficiency. The development of international standards for intelligent system performance is expected to accelerate the application of these technologies in vital sectors such as healthcare, education, and industry, while emphasizing the need to integrate security aspects into the design of intelligent systems to ensure data protection and the reliability of decisions in sensitive operating environments [45].

Real-World Uses and Technical Difficulties of Combining Data Mining with Robotic Systems:

Integrating data mining techniques with robotic systems demonstrates significant potential in several practical fields, such as microsurgery, where AI-powered robots use patient data analysis to make accurate, real-time decisions; smart cleaning, where robots can automatically optimize their routes by learning from environmental maps; and precision agriculture, where robots analyze plant and soil data to predict crop yields and determine irrigation or fertilizer needs, thus increasing agricultural production efficiency [44].

Despite these promising applications, these systems face significant technical challenges, most notably the sheer volume and complexity of data. The abundance and diversity of data make its processing and analysis difficult without advanced analytical tools. Furthermore, the difficulty in interpreting the internal decisions of deep learning models, which are often considered "black boxes," hinders the full adoption of these systems. Additionally, there are security and privacy risks, particularly in sensitive areas such as healthcare and smart city infrastructure, where any data breach or unauthorized access could have serious consequences [44], [45]. Despite significant progress, the widespread deployment of real-world applications still faces gaps that require the development of reliable infrastructures, improved model interpretability, and ensuring data security in all operational environments.

Future Prospects of Intelligent Robotic Systems

Intelligent robotic systems are expected to evolve significantly, gaining the ability to learn continuously from large and diverse data streams. This advancement will enable greater adaptability and improved performance across complex, real-world environments. To remain effective in dynamic contexts, these systems must demonstrate flexible interaction capabilities, allowing them to adjust behavior in real time based on user needs and environmental changes. In addition, increased autonomy will allow robotic systems to detect, analyze, and resolve operational issues independently. This shift not only supports full automation but also contributes to building more robust and self-sustaining intelligent agents.

Suggestions

Strengthen the integration of data mining and adaptive learning techniques: To improve social robots' capacity to continually learn and quickly adjust to a variety of user contexts, sophisticated algorithms combining data mining, reinforcement learning, and meta-learning must be developed. Strengthen intelligent cybersecurity: To guarantee prompt and efficient threat detection, robotic cybersecurity systems should incorporate artificial intelligence technology. This will boost user confidence and help expand the employment of robots in delicate industries.

Creating mechanisms for self-updating and continuous learning: Researching methods for continuous learning to lessen the need for frequent human involvement and guarantee the longevity of systems' effectiveness in the face of environmental difficulties and new threats. Improving human-machine interaction quality: By giving robots sophisticated analytical capabilities to comprehend user behavior through interaction data, they may efficiently and dynamically customize their replies and improve the user experience.

Promoting the creation of legal and ethical standards: Creating precise guidelines for privacy and ethics in the use of social robots to protect user rights and control the processing of private information. Fostering scalability and integration research: Developing scalable robotic systems that can interface with other technologies, like augmented reality and the Internet of Things (IoT), to improve robot performance in many settings. Fostering interdisciplinary cooperation: To create robots that better suit the demands and behaviors of users, engineering, computer science, psychology, and social sciences should work together.

Conclusion

The development of intelligent social robots has reached a significant turning point with the integration of data mining techniques, cybersecurity, and adaptive learning methodologies. Recent studies indicate that these techniques enable robots to learn autonomously, enhance human

interaction, and simultaneously protect systems from cyberattacks that could erode user trust. The importance of social robots in industry, education, and healthcare is expected to increase as artificial intelligence (AI) technologies continue to advance. Therefore, further research is needed to develop more reliable and efficient algorithms that ensure the integration of AI and cybersecurity, enabling robots to adapt rapidly and continuously to real-world environments. Ensuring that robots meet human needs safely and effectively requires clear ethical and legal frameworks and fostering interdisciplinary collaboration to achieve comprehensive and effective integration.

Acknowledgement

The article's authors have not received any financial support from any organization concerning this research.

References

- [1] S. J. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Global Edition 4e," 2021.
- [2] J. Han, J. Pei, and H. Tong, *Data mining: concepts and techniques*. Morgan kaufmann, 2022.
- [3] A. Mahmood, K. Shi, S. Khatoon, and M. Xiao, "Data mining techniques for wireless sensor networks: A survey," *Int J Distrib Sens Netw*, vol. 9, no. 7, p. 406316, 2013.
- [4] Dr. Hassan Al-Sharif, "Artificial intelligence is reshaping human intelligence by expanding its capabilities and enhancing its interaction with computers (Shutterstock)," *The Middle East*, Mar. 28, 2025. Accessed: Dec. 01, 2025. [Online]. Available: <https://aawsat.com/>
- [5] N. Oralbayeva, A. Aly, A. Sandygulova, and T. Belpaeme, "Data-driven communicative behaviour generation: A survey," *ACM Trans Hum Robot Interact*, vol. 13, no. 1, pp. 1–39, 2024.
- [6] M. Andronie *et al.*, "Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the internet of robotic things," *Electronics (Basel)*, vol. 12, no. 1, p. 22, 2022.
- [7] A. Botta, S. Rotbei, S. Zinno, and G. Ventre, "Cyber security of robots: A comprehensive survey," *Intelligent Systems with Applications*, vol. 18, p. 200237, 2023.
- [8] J. A. Tanimu and W. Abada, "Addressing cybersecurity challenges in robotics: A comprehensive overview," *Cyber Security and Applications*, vol. 3, p. 100074, 2025.
- [9] M. W. Ahmad, M. Mourshed, and Y. Rezgui, "Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption," *Energy Build*, vol. 147, pp. 77–89, 2017.
- [10] B. Siciliano and O. Khatib, "Robotics and the handbook," in *Springer Handbook of Robotics*, Springer, 2016, pp. 1–6.
- [11] B. Siciliano, O. Khatib, and T. Kröger, *Springer handbook of robotics*, vol. 200. Springer, 2008.
- [12] G. A. Bekey and A. Robots, "From biological inspiration to implementation and control," 2005, *The MIT Press, Cambridge, Massachusetts*.
- [13] S. Thrun, "Probabilistic robotics," *Commun ACM*, vol. 45, no. 3, pp. 52–57, 2002.
- [14] V. Kumar and N. Michael, "Opportunities and challenges with autonomous micro aerial vehicles," *Int J Rob Res*, vol. 31, no. 11, pp. 1279–1291, 2012.
- [15] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," *Nature*, vol. 521, no. 7553, pp. 436–444, 2015.
- [16] L. Zhao, T. Chen, P. Yuan, X. Li, and B. Chen, "Review of deep learning-based visual SLAM: types, approaches, and future work," *Industrial Robot: the international journal of robotics research and application*, 2025.
- [17] L. Tai, G. Paolo, and M. Liu, "Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation," in *2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)*, IEEE, 2017, pp. 31–36.
- [18] C. Breazeal, K. Dautenhahn, and T. Kanda, "Social robotics," *Springer handbook of robotics*, pp. 1935–1972, 2016.
- [19] S. Madakam, R. Ramaswamy, and S. Tripathi, "Internet of Things (IoT): A literature review," *Journal of computer and communications*, vol. 3, no. 5, pp. 164–173, 2015.
- [20] P. P. Ray, "Internet of robotic things: concept, technologies, and challenges," *IEEE access*, vol. 4, pp. 9489–9500, 2017.
- [21] A. Tapus, M. J. Mataric, and B. Scassellati, "Socially assistive robotics [grand challenges of robotics]," *IEEE Robot Autom Mag*, vol. 14, no. 1, pp. 35–42, 2007.

- [22] F. Tanaka and T. Kimura, "The use of robots in early education: a scenario based on ethical consideration," in *RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication*, IEEE, 2009, pp. 558–560.
- [23] M. A. Goodrich and A. C. Schultz, "Human–robot interaction: a survey," *Foundations and trends® in human–computer interaction*, vol. 1, no. 3, pp. 203–275, 2008.
- [24] L. Atzori, A. Iera, and G. Morabito, "Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm," *Ad Hoc Networks*, vol. 56, pp. 122–140, 2017.
- [25] K. Zhou, T. Liu, and L. Zhou, "Industry 4.0: Towards future industrial opportunities and challenges," in *2015 12th International conference on fuzzy systems and knowledge discovery (FSKD)*, IEEE, 2015, pp. 2147–2152.
- [26] A. Haskard and D. Herath, "Secure Robotics: Navigating Challenges at the Nexus of Safety, Trust, and Cybersecurity in Cyber-Physical Systems," *ACM Comput Surv*, vol. 57, no. 9, pp. 1–48, 2025.
- [27] I. H. Han *et al.*, "Human-robot interaction and social robot: The emerging field of healthcare robotics and current and future perspectives for spinal care," *Neurospine*, vol. 21, no. 3, p. 868, 2024.
- [28] F. Gongor and O. Tutsoy, "On the remarkable advancement of assistive robotics in human-robot interaction-based health-care applications: An exploratory overview of the literature," *Int J Hum Comput Interact*, vol. 41, no. 2, pp. 1502–1542, 2025.
- [29] B. Kirby, "Human robot interaction: applications, challenges and future directions," *J Robot Spect*, vol. 1, pp. 111–121, 2023.
- [30] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, "Understanding deep learning requires rethinking generalization," *arXiv preprint arXiv:1611.03530*, 2016.
- [31] L. Wu, S. Fu, Y. Luo, H. Yan, H. Shi, and M. Xu, "A robust and lightweight privacy-preserving data aggregation scheme for smart grid," *IEEE Trans Dependable Secure Comput*, vol. 21, no. 1, pp. 270–283, 2023.
- [32] C. Hu, Z. Liu, R. Li, P. Hu, T. Xiang, and M. Han, "Smart contract assisted privacy-preserving data aggregation and management scheme for smart grid," *IEEE Trans Dependable Secure Comput*, vol. 21, no. 4, pp. 2145–2161, 2023.
- [33] M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," *Science (1979)*, vol. 349, no. 6245, pp. 255–260, 2015.
- [34] J. Kober, J. A. Bagnell, and J. Peters, "Reinforcement learning in robotics: A survey," *Int J Rob Res*, vol. 32, no. 11, pp. 1238–1274, 2013.
- [35] C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martín-Martín, and P. Stone, "Deep reinforcement learning for robotics: A survey of real-world successes," in *Proceedings of the AAAI Conference on Artificial Intelligence*, 2025, pp. 28694–28698.
- [36] H. Bai, R. Cheng, and Y. Jin, "Evolutionary reinforcement learning: A survey," *Intelligent Computing*, vol. 2, p. 0025, 2023.
- [37] R. S. Yashwanthbhai, R. Truptiben Yashwanthbhai, R. H. Yashwanthbhai, and A. Darji, "Meta-Learning For Autonomous Ai Agents: Enabling Self-Improvement Beyond Training Data," 2023. [Online]. Available: <http://www.veterinaria.org>
- [38] S. Gai, S. Lyu, H. Zhang, and D. Wang, "Continual reinforcement learning for quadruped robot locomotion," *Entropy*, vol. 26, no. 1, 2024.
- [39] S. Ho, M. Liu, S. Gao, and L. Gao, "Learning to learn for few-shot continual active learning," *Artif Intell Rev*, vol. 57, no. 10, p. 280, 2024.
- [40] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, "A survey of robot learning from demonstration," *Rob Auton Syst*, vol. 57, no. 5, pp. 469–483, 2009.
- [41] S. Thrun, "Learning metric-topological maps for indoor mobile robot navigation," *Artif Intell*, vol. 99, no. 1, pp. 21–71, 1998.
- [42] J. Peters and S. Schaal, "Reinforcement learning of motor skills with policy gradients," *Neural networks*, vol. 21, no. 4, pp. 682–697, 2008.
- [43] W. Zhu, X. Guo, D. Owaki, K. Kutsuzawa, and M. Hayashibe, "A survey of sim-to-real transfer techniques applied to reinforcement learning for bioinspired robots," *IEEE Trans Neural Netw Learn Syst*, vol. 34, no. 7, pp. 3444–3459, 2021.
- [44] J. T. Licardo, M. Domjan, and T. Orehovački, "Intelligent robotics—A systematic review of emerging technologies and trends," *Electronics (Basel)*, vol. 13, no. 3, p. 542, 2024.
- [45] S. Neupane *et al.*, "Security considerations in ai-robotics: A survey of current methods, challenges, and opportunities," *IEEE Access*, vol. 12, pp. 22072–22097, 2024.